SF Droof

v Bf/ﬂg trust iNnto your ,O/”OJGCZ.LS

Blockchain Security | Smart Contract Audits | KYC
Development | Marketing

MADE IN GERMANY

Skygate
AUDIT

SECURITY ASSESSMENT

11. September, 2025

Yy SolidProof io A @solidproof io

https://t.me/solidproof_io
https://twitter.com/SolidProof_io

&€ soubrioof I E—
Introduction
Disclaimer
Project Overview
Summary
Social Medias
Audit Summary
File Overview
Imported packages
Audit Information
Vulnerability & Risk Level
Auditing Strategy and Techniques Applied
Methodology
Overall Security
Upgradeability
Ownership
Ownership Privileges
Minting tokens
Burning Tokens without Allowance
Blacklist addresses
Fees and Tax
Lock User Funds
Components
Exposed Functions
StateVariables
Capabilities
Inheritance Graph
Centralization Privileges
Audit Results
Critical issues

High issues

© 0O N oo oo o v A b

10
11
11
12
13
13
14
15
16
17
18
18
18
19
20
21
22
22
22

(lf SOLIDProof
Medium issues

Low issues

Informational issues

22
22
22

€ soLprioof I I

Introduction

SolidProof.io is a brand of the officially registered company Future Visions
Deutschland. We’re mainly focused on Blockchain Security, such as Smart Contract
Audits and KYC verification for project teams.

Solidproof.io assesses potential security issues in the smart contracts
implementations, reviews for potential inconsistencies between the code base and
the whitepaper/documentation, and provides suggestions for improvement.

Disclaimer

SolidProof.io reports are not, nor should they be considered, an “endorsement” or
“disapproval” of any particular project or team. These reports are not, nor should
they be considered, an indication of the economics or value of any “product” or
“asset” created by any team. SolidProof.io does not cover testing or auditing the
integration with external contracts or services (such as Unicrypt, Uniswap,
PancakeSwap, etc.).

SolidProof.io Audits do not provide any warranty or guarantee regarding the
absolute bug-free nature of the technology analysed, nor do they provide any
indication of the technology proprietors. SolidProof Audits should not be
used in any way to make decisions around investment or involvement with
any particular project. These reports in no way provide investment advice,
nor should be leveraged as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to help our
customers increase the quality of their code while reducing the high level of risk
presented by cryptographic tokens and blockchain technology. Blockchain
technology and cryptographic assets present a high level of ongoing risk.
SolidProof’s position is that each company and individual are responsible for their
own due diligence and continuous security. SolidProof in no way claims any
guarantee of the security or functionality of the technology we agree to analyse.

https://www.soliproof.io
http://SolidProof.io

& soLDrroof I —

Project Overview

Summary
Project Name Skygate

Website https://www.skygatetoken.at/

About the project The SKYGATE TOKEN is a digital currency that is limited to a
maximum of 10,000,000,000 tokens. The aim of Skygate is to
digitize important areas of aviation. “Skygate brings aviation to the
blockchain”. The SKYGATE TOKEN offers various possible uses.
For some, the SKYGATE TOKEN serves purely as a speculative
object with the potential to multiply the investment. Others need the
token to gain access to the SKYGATE ecosystem and the real usage
options.

Ethereum
Language Solidity

Codebase Link https://etherscan.io/address/
0x0fd1AcD2BF1B64E985FEQAB1FC091cD90BFA218a#code

N/A

Unit Tests Not Provided

Social Medias
Telegram https://t.me/skygatetoken

Twitter https://x.com/SkygateNetwork
Facebook N/A

Instagram https://www.instagram.com/skygate network/#

N/A
Reddit N/A
N/A
Discord N/A
N/A
TikTok N/A

LinkedIn N/A

https://www.skygatetoken.at/
https://etherscan.io/address/0x0fd1AcD2BF1B64E985FE9AB1FC091cD90BFA218a#code
https://t.me/skygatetoken
https://x.com/SkygateNetwork
https://www.instagram.com/skygate_network/#

€ soLpPioof I

Audit Summary

Version Delivery Date Changelog

Layout Project
vi.0 11. September 2025 + Automated- /Manual-Security Testing
Summary

Note - The following audit report presents a comprehensive security analysis of the
smart contract utilized in the project that includes malicious outside manipulation of
the contract’s functions. This analysis did not include functional testing (or unit
testing) of the contract/s logic. We cannot guarantee 100% logical correctness of
the contract as we did not functionally test it. This includes internal calculations in
the formulae used in the contract.

€ soLprioof I —

File Overview

The Team provided us with the files that should be tested in the security
assessment. This audit covered the following files listed below with an SHA-1 Hash.

File Name SHA-1 Hash

SKYG.sol 790dd7995¢c497a6b6e06332384daddd37550fe32

Please note: Files with a different hash value than in this table have been modified after the
security check, either intentionally or unintentionally. A different hash value may (but need not)
indicate a changed state or potential vulnerability that was not the subject of this scan.

€ soLprioof I I

Imported packages
Used code from other Frameworks/Smart Contracts (direct imports).

N/A

Note for Investors: We only audited contracts mentioned in the scope above. All
contracts related to the project apart from that are not a part of the audit, and we
cannot comment on its security and are not responsible for it in any way

€ soLprioof I I

Audit Information

Vulnerability & Risk Level

Risk represents the probability that a certain source threat will exploit vulnerability
and the impact of that event on the organization or system. The risk Level is
computed based on CVSS version 3.0.

A vulnerability that can disrupt the

contract functioning in a number of Immediate action to
9-10 : . :
scenarios, or creates a risk that the reduce risk level.
contract may be broken.
A vulnerability that affects the desired .
. Implementation of
outcome when using a contract, or . .
7-8.9 . - corrective actions as
provides the opportunity to use a .
. . soon aspossible.
contract in an unintended way.
. A vulnerability that could affect the Implementation of
Medlum 4-6.9 desired outcome of executing the corrective actions in a
contract in a specific scenario. certain period.
A vulnerability that does not have a .
significant impact on possible IgRlgmentation of
2-3.9 certain corrective actions

scenarios for the use of the contract

and is probably subjective. or accepting the risk.

A vulnerability that have informational ~ An observation that does
0-1.9 character but is not effecting any of the not determine a level of
code. risk

€ soLprioof I I

Auditing Strategy and Techniques Applied

Throughout the review process, care was taken to check the repository for security-
related issues, code quality, and compliance with specifications and best practices.
To this end, our team of experienced pen-testers and smart contract developers
reviewed the code line by line and documented any issues discovered.

We check every file manually. We use automated tools only so that they help us
achieve faster and better results.

Methodology

The auditing process follows a routine series of steps:

1. Code review that includes the following:

a. Review the specifications, sources, and instructions provided to
SolidProof to ensure we understand the smart contract's size, scope, and
functionality.

b. Manual review of the code, i.e., reading the source code line by line to
identify potential vulnerabilities.

c. Comparison to the specification, i.e., verifying that the code does what is
described in the specifications, sources, and instructions provided to
SolidProof.

2. Testing and automated analysis that includes the following:
a. Test coverage analysis determines whether test cases cover code and
how much code is executed when those test cases are executed.
b. Symbolic execution is analysing a program to determine what inputs
cause each part of a program to execute.

3. Review best practices, i.e., smart contracts to improve efficiency, effectiveness,
clarity, maintainability, security, and control based on best practices,
recommendations, and research from industry and academia.

4. Concrete, itemized and actionable recommendations to help you secure your
smart contracts.

10

€ souprioof I

Overall Security

Upgradeability
Contract is not an upgradeable Deployer cannot update the contract .Wlth .n.ew
functionalities
Description The contract is not an upgradeable contract. The deployer
is not able to change or add any functionalities to the
contract after deploying.
Comment N/A

11

€ soLprioof I —

Ownership

Contract ownership is renounced The ownership is renounced

Description The owner renounced the ownership that means the
contract’s owner will no longer have any control or
authority over the contract’s operations.

Comment N/A

Note - If the contract is not deployed then we would consider the ownership to be
not renounced. Moreover, if there are no ownership functionalities then the
ownership is automatically considered renounced.

12

€ soLprioof I —

Ownership Privileges

These functions can be dangerous. Please note that abuse can lead to financial loss. We have a
guide where you can learn more about these Functions.

Minting tokens

Minting tokens refers to the process of creating new tokens in a cryptocurrency or blockchain
network. This process is typically performed by the project's owner or designated authority, who
can add new tokens to the network's total supply.

Contract owner cannot mint

BT The owner cannot mint new tokens

Description The owner is not able to mint new tokens once the contract is
deployed.

Comment N/A

13

€ soLprioof I —

Burning Tokens without Allowance

Burning tokens is the process of permanently destroying a certain number of tokens, reducing the
total supply of a cryptocurrency or token. This is usually done to increase the value of the
remaining tokens, as the reduced supply can create scarcity and potentially drive up demand.

Contract owner cannot burn

s The owner cannot burn tokens
Description The owner is not able to burn tokens without any allowances.
Comment N/A

14

€ soLprioof I

Blacklist addresses

Blacklisting addresses in smart contracts is the process of adding a certain address
to a blacklist, effectively preventing them from accessing or participating in certain
functionalities or transactions within the contract. This can be useful in preventing
fraudulent or malicious activities, such as hacking attempts or money laundering.

Contract owner cannot

blacklist addresses The owner cannot blacklist addresses
Description The owner is not able to blacklist addresses to lock funds.
Comment N/A

15

€ soLprioof I —

Fees and Tax

In some smart contracts, the owner or creator of the contract can set fees for
certain actions or operations within the contract. These fees can be used to cover

the contract's cost, such as paying for gas fees or compensating the contract's
owner for their time and effort in developing and maintaining the contract.

Contract owner cannot set

fees more than 25% The owner cannot levy unfair taxes
Description The owner is not able to set the fees above 25%
Comment N/A

16

€ soLprioof I —

Lock User Funds

In a smart contract, locking refers to the process of restricting access to certain
tokens or assets for a specified period of time. When tokens or assets are locked in

a smart contract, they cannot be transferred or used until the lock-up period has
expired or certain conditions have been met.

Owner cannot lock the contract The owner cannot lock the contract

Description The owner is not able to lock the contract by any functions or
updating any variables.

Comment N/A

17

€ soLprioof I —

External/Public functions

External/public functions are functions that can be called from outside of a contract, i.e., they can
be accessed by other contracts or external accounts on the blockchain. These functions are
specified using the function declaration’s external or public visibility modifier.

State variables

State variables are variables that are stored on the blockchain as part of the contract's state. They
are declared at the contract level and can be accessed and modified by any function within the
contract. State variables can be defined with a visibility modifier, such as public, private, or internal,
which determines the access level of the variable.

Components

__’Contracts ¥ Libraries (Interfaces @ Abstract

1 0 0 0

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter
methods for public stateVars are not included.

¢ Public & Payable

0 0

External Internal Private Pure View

0 1 0 0 0

StateVariables

Total {3 Public

0 0

18

(lf SOLIDProof
Capabilities
Solidity

Versions
observed

"0.8.17

Transfers
ETH

Can

Receive
Funds

Bl Uses
Assembl
y

@ Has

Destroyable
Contracts

19

€ soLprioof I —

Inheritance Graph

An inheritance graph is a graphical representation of the inheritance hierarchy among contracts. In
object-oriented programming, inheritance is a mechanism that allows one class (or contract, in the
case of Solidity) to inherit properties and methods from another class. It shows the relationships
between different contracts and how they are related to each other through inheritance.

20

€ soLprioof I

Centralization Privileges

Centralization can arise when one or more parties have privileged access or control over the
contract's functionality, data, or decision-making. This can occur, for example, if a single entity
controls the contract or if certain participants have special permissions or abilities that others do
not.

In the project, some authorities have access to the following functions:

File Privileges

SKYG.sol There are no ownership privileges in this contract.

Recommendations

To avoid potential hacking risks, the client should manage the private key of the
privileged account with care. Additionally, we recommend enhancing the security
practices of centralized privileges or roles in the protocol through a decentralized
mechanism or smart-contract-based accounts, such as multi-signature wallets.

Here are some suggestions of what the client can do:

- Consider using multi-signature wallets: Multi-signature wallets require multiple
parties to sign off on a transaction before it can be executed, providing an extra
layer of security, e.g. Gnosis Safe

- Use of a timelock at least with a latency of, e.g. 48-72 hours for awareness of
privileged operations

- Introduce a DAO/Governance/Voting module to increase transparency and user
involvement

- Consider Renouncing the ownership so that the owner can no longer modify any
state variables of the contract. Make sure to set up everything before renouncing.

21

& soLDrroof I

Audit Results

Critical issues

No critical issues

High issues

No high issues

Medium issues

No medium issues

Low issues

Informational issues

No informational issues

Legend for the Issue Status

Attribute or Symbol Meaning
Open The issue is not fixed by the project team.
Fixed The issue is fixed by the project team.

The issue has been acknowledged or declared as part

Acknowledged(ACK) of business logic.

22

Blockchain Security | Smart Contract Audits | KYC
Development | Marketing

MADE IN GERMANY

	Introduction
	Disclaimer
	Project Overview
	Audit Information
	Overall Security
	Ownership Privileges
	Centralization Privileges
	Audit Results

